Page Length: 99

Size: 579 KB

Format: PDF & Word




This research work examined and compares the physicochemical properties and some chemical constituents of selected energy drinks. Fourteen (14) brands of energy drinks samples consisting eleven (11) liquid and three (3) powdered forms were randomly purchased. All samples were analyzed for their physicochemical properties (pH, turbidity, conductivity and total dissolved solids), trace and heavy metals, aspartame, sugar and caffeine contents. Results showed that the physicochemical properties (i.e. pH, turbidity, conductivity and total dissolved solids) ranged from 4.47 ± 0.012 – 5.96 ± 0.012, 8 ± 0.577


– 592 ± 1.155 NTU, 2.21 ± 0.006 – 1975 ± 1.732 µs/cm, and 243 ± 0.577 – 1064 ± 0.577 mg/L respectively. Energy drinks analyzed all fell within the FDA recommended range for the physicochemical properties analyzed. Iron, calcium, zinc and potassium were found in all the energy drinks and their concentration ranged from 1.961 ± 0.0003 – 0.294 ± 0.0005 mg/L, 2.763 ± 0.0009 – 19.310 ± 0.0015 mg/L, 0.045 ± 0.0001 – 13.887 ± 0.0037 mg/L, and 2.0 to 2500 mg/L respectively. The copper, lead and manganese concentration of energy drinks ranged from 0.002 ± 0.0002 – 0.102 ± 0.0003 mg/L, 0.028 ± 0.0006 – 0.209


± 0.0009 mg/L and 0.003 ± 0.0001 – 0.024 ± 0.0002 mg/L respectively. The concentration of copper and manganese were below the MCL of 1.0 mg/L and 0.05 mg/L respectively while lead had a concentration above the MCL of 0.01 mg/L. Cadmium was not detected in all energy drinks except for sample EJ which had a concentration of 0.102 ± 0.0003 mg/L and exceeded the MCL of 0.005 mg/L. The caffeine, aspartame and sugar concentrations ranged from 1.11 mg/L – 2487.13 mg/L, 6.51 mg/L – 1491.19 mg/L, and 16.98 – 1686.73 mg/L respectively. Caffeine and aspartame concentrations in all the energy drink samples were below the FDA set standard of 400 mg/L and 3000 mg/L respectively except for sample AL which had a concentration above the set standard for




caffeine. Though the analyzed parameters were mostly below the set standards, especially caffeine, aspartame and sugar, it is important that the pattern of consumption of these drinks must be monitored to minimize ingestion of excess doses of harmful substances to prevent the reported adverse effects.



























































Title page


Table of Contents

List of Abbreviations




1.1       Energy Drinks

1.2       Contents of Energy Drinks

1.2.1    Caffeine

1.2.2    Taurine

1.2.3    Guarana

1.2.4    Glucuronolactone

1.2.5    Ginseng

1.2.6    Vitamins

1.2.7    Sugar

1.3       Justification

1.4       Aim and Objectives




2.1       Review Work on Energy Drinks

2.2       Caffeine

2.2.1    Metabolism of caffeine

2.2.2    Caffeine and health

2.2.3    Research works on caffeine

2.3       Aspartame

2.3.1    Chemistry of aspartame

2.3.2    Biochemical data

2.4       Heavy Metal

2.4.1    Lead

2.4.2    Cadmium

2.4.3    Copper

2.4.4    Zinc

2.4.5    Manganese

2.4.6    Iron

2.4.7    Calcium

2.4.8   Potassium

2.5       Carbohydrates

2.5.1    Sugar

2.5.2    Added sugars

2.5.3    Sugar-sweetened beverage

2.5.4    Sugar-sweetened beverages and health risks

2.6       Research Work on Beverages




3.1       Materials

3.1.1    Chemicals and reagents

3.1.2    Preparation of stock solution Preparation of standard solution for AAS Preparation of standard solution for HPLC Preparation of standard solution for UV

3.1.3    Apparatus and equipments

3.1.4    Sample collection

3.1.5    Sample preparation Sample preparation for AAS Sample preparation for HPLC Sample preparation for UV

3.2       Analysis of Physicochemical Properties

3.2.1    Determination of pH

3.2.2    Determination of conductivity

3.2.3    Determination of turbidity

3.2.4    Total dissolved solid

3.3       Elemental Analysis

3.4       Determination of Carbohydrates (Sugar)

3.5       Determination of Caffeine and Aspartame

3.5.1    Preparation of pH 4.0 and pH 7.0 buffer solution

3.5.2    Buffer preparation

3.5.3    Mobile phase preparation

3.6       Statistical Analysis



4.0       RESULTS

4.1       Physicochemical Parameters of Samples

4.2       Metal Concentrations

4.2.1    Concentration of heavy metals

4.2.2    Concentrations of essential metals

4.3       Concentrations of Caffeine, Aspartame and Sugar



5.0       DISCUSSION

5.1       Physicochemical Parameters of the Samples

5.1.1    pH

5.1.2    Turbidity

5.1.3    Total dissolved solids

5.1.4    Conductivity

5.2       Metal Concentrations

5.2.1    Heavy metals Cadmium Lead Copper Manganese Zinc

5.2.2    Essential Metals Iron Calcium Potassium

5.3       Caffeine, Aspartame and Sugar Concentrations in Energy Drinks

5.3.1    Caffeine

5.3.2    Aspartame

5.3.3    Sugar



6.0       Conclusion

6.1       Recommendations




List of Abbreviations


AAS                                                                     Atomic Absorption Spectroscopy


ATP                                                                      Adenosine Triphosphate


CYP1A2                                                            Cytochrome P450 1A2


CYP2A6                                                            Cytochrome P450 2A6


DKP                                                                      5-benzyl-3, 6-dioxo-2-piperazine acetic acid


DNA                                                                      Deoxyribonucleic Acid


EU                                                                          European Union


FAO                                                                       Food and Agriculture Organization


FDA                                                                       Food and Drinks Administration


GC–MS                                                                 Gas Chromatography–Mass Spectrometry


HDL                                                                       High Density Lipoprotein Cholesterol


HPLC                                                                      High Performance Liquid Chromatographic


NAT2                                                                    N-acetyl transferase 2


NAG                                                                      N-acetyl-beta-glucosamynidase


NNS                                                                         National Nutrition Survey


RDA                                                                       Recommended Daily Allowance


RNA                                                                       Ribonucleic Acid


SCF                                                                         Scientific Committee for Food


SSB                                                                          Sugar Sweetened Beverages


USA                                                                         United States of America


UV                                                                            Ultraviolet Visible Spectroscopy


WHO                                                                      World Health Organization










Energy drinks refer to beverages that contain large doses of caffeine and other legal stimulants such as taurine, carbohydrates, glucuronolactone, inositol, niacin, panthenol, and β-complex vitamins which are considered as source of energy (Attila and Çakir, 2009). The consumption of readily available energy drinks has increased significantly with young adults forming the largest part of the consumers. History of energy drink dates back to 1987 when Red Bull was introduced in Austria. It became more popular in the 1990s following its introduction to the United States. Since then the sale of this drink has increased exponentially. In 2006, the energy drink market grew by 80% (Foran et al.,


2011). This is because manufactures claim the drinks can boost energy levels as well as physical endurance, improve concentration and reaction speed (Van den Eynde et al.,







In recent years, a number of different energy drinks have been introduced in the Nigerian market to provide an energy boost or as dietary supplements. These drinks are marketed specifically to children and young adults. These products have been used for various reasons. A survey conducted among college students shows that 67% of students admitted using energy drinks to cope with insufficient sleep, 65% mentioned increasing energy and 54% use it for fun at parties; 50% for studying or completing a major course project, 45% used it while driving a car for a long period of time and 17% for treating hangover (Malinauskas et al., 2007). These products have also been used to reduce the depressor effect of alcohol or even to gain social status (Ferreira et al., 2004; Kaminer, 2010).





Many energy drinks are promoted as being nutraceutical foods, boosting health, energy, or otherwise having sought-after benefits. There is some concern among health professionals that these beverages, and the drinking behaviours of the targeted consumers, may in fact have adverse health consequences. The most commonly reported adverse effects include insomnia, nervousness, headache, and tachycardia (Clauson et al., 2008). In a recent study, heavy consumption of energy drinks was attributed to new onset seizures in four patients (Iyadurai and Chung, 2007) and hospitalization of individuals with pre-existing mental illness (Chelben et al., 2008).



  • Energy Drinks


Energy drinks first appeared in Europe and Asia in the 1960s in response to consumer demand for a dietary supplement that would result in increased energy (Reissig et al.,


2008). In 1962, a Japanese company, Taisho Pharmaceuticals, launched Lipovitan D, one of the very first energy drinks, which is still dominating the Japanese market. Since the 1960s, the energy drink market has grown into a multibillion dollar business which has been reported as being the fastest growing segment in the beverage industry. Energy drinks have established a viable position in the beverage market as evidenced by their commonplace consumption in the morning, afternoon, and night, not only by the general consumer, but those of age 18 to 34 in particular (Lal, 2007).



The popularity of energy drinks and the growth in their consumption among adolescents and young adults have brought worries regarding general health and well being of these consumers. Adolescents and young adults are often uninformed about the content of energy drink (Rath, 2012).



  • Contents of Energy Drinks


There are hundreds of energy drinks available in the market, many share very similar ingredient profiles. Most of these energy drinks consist mainly of caffeine, Taurine, Guarana, Ginseng, B vitamins, Ginko Biloba, L-carntine, sugars, Antioxidants, Glucuronolactone, Yerba Mate, Creatine, Acai Berry, Milk Thistle, L-theanine, Inositol and artificial sweetners (Babu et al., 2008).



1.2.1     Caffeine


Caffeine is probably the most frequently ingested pharmacologically active substance in the world. It is one of the main ingredients of stimulant drinks and it is also present in tea, coffee and other beverages and foods. Caffeine is extracted from the raw fruit of over sixty species of coffee plants (coffea Arabica), all part of the methylxanthine family. The dimethylxanthine derivatives, theophylline and theobromine, are also found in a variety of plants. It is also extracted from tea, kola nuts, and cocoa. The average total intake of caffeine in the Republic of Ireland and the UK is estimated to be 214 and 278 mg per person per day, respectively (FSPB, 2010). Data from the consumption survey, based on weekly intake, indicates that among stimulant drink consumers, the average daily caffeine intake from stimulant drinks alone would be approximately 35 mg, rising to about 90 mg among the highest consumers (FSPB, 2010). This does not appear excessive. However, when the consumption of stimulant drinks in a single session was investigated, the average caffeine consumed was approximately 240 mg (3 cans), rising to about 640 mg (8 cans) among the highest consumers (FSPB, 2010). Such large intake levels among the highest consumers are a cause of concern, particularly in relation to the known potential acute health effects of caffeine such as tachycardia, increases in blood pressure and dehydration,




as well as behavioural and cognitive effects. The health effects of chronic or habitual caffeine consumption remain uncertain.



1.2.2     Taurine


Taurine (2-aminoethyl sulfonic acid) is a sulfur containing amino acid that is the most abundant amino acid found naturally in our bodies, primarily in the retina and skeletal and cardiac muscle tissue (Timbrell et al., 1995; Imagawa et al., 2009). Taurine is derived from the metabolism of methionine and cysteine (Huxtable, 1992; Stipanuk, 2004). It is also present in common food items such as meat and fish. The data on stimulant drink intake among stimulant drink consumers indicate that average daily taurine intake from stimulant drinks was approximately 0.4 g, increasing to about 1 g among the highest consumers (FSPB, 2010). The most taurine consumed from stimulant drinks in a single session was averaged at approximately 3 g, rising to about 8 g by the highest consumers (FSPB, 2010). Stimulant drink intake at the maximum level of intake provides taurine far in excess of that from other foods or beverages in the diet. Data available indicate no evidence of adverse effects of taurine at such intakes and in a recent report the EU Scientific Committee for


Food (SCF) was unable to conclude that the ‗safety-in-use‘ of taurine in the concentration range reported for stimulant drinks has been adequately established (EU SCF, 1983).



1.2.3     Guarana


Guarana (Paullinia cupana) is a native South American plant containing guaranine, a substance chemically similar to caffeine with comparable stimulant effects. Guarana is often added to stimulant drinks, either in combination with caffeine or on its own. The stimulant effect of guarana is related to its caffeine content; one gram of guarana contains




as much caffeine (40 mg) as a medium strength cup of coffee. The precise source and nature of the stimulant activity of guarana is not well understood. However, it has been reported that guarana exerts a more prolonged effect than an equivalent amount of caffeine. The Food and Drinks Administration (FDA) in the USA currently prohibits the use of guarana in food and drinks while awaiting further clarification on its safety (USFDA, 2011).



1.2.4     Glucuronolactone


This is a naturally occurring substance produced in small amounts within the body. Supplementation with d-glucarates, including glucuronolactone, may favor the body‘s natural defense mechanism for eliminating carcinogens and tumor promoters and their effects (Zołtaszek et al., 2008). The data from the consumption survey indicate that average daily glucuronolactone intake from stimulant drinks was approximately 0.25 g, rising to about 0.7 g among the highest consumers (FSPB, 2010). The most glucuronolactone consumed from stimulant drinks in a single session was averaged at approximately 1.8 g, rising to about 4.8 g among the highest consumers (FSPB, 2010). These maximum levels of intake provide more glucuronolactone than would otherwise be achieved through other foods or beverages in the diet. There is very little information available for risk assessment of glucuronolactone at such intakes. There is no indication from the available data that there is any risk to health from consumption of high amounts of glucuronolactone, although these data are limited.










1.2.5     Ginseng


Ginseng is a herb that has been used for over 2000 years by people in East Asian countries including China, Japan, and Korea as a remedy for various diseases and for promoting longevity (Lee et al., 2005; Nam et al., 2005). Panax ginseng is the primary commercial species and is often referred to as Korean or Asian ginseng. Siberian ginseng (Eleutherococcus senticosus) is not truly a ginseng since it contains eleutherosides as its active constituent and no ginsenosides. P. ginseng is a small, shade loving perennial shrub that reaches about 60cm in height and belongs to the plant family Araliacae. The entire ginseng plant has been used for medicinal purposes; however, the root is the most prominent and dominates the commercial sales. Ginseng has been incorporated into a variety of energy drinks although little medical literature supports these uses. Adverse effects associated with ginseng use tend to be mild. However more serious complications have been reported, including diarrhoea, vaginal bleeding, severe headache, and Stevens-Johnson syndrome (Enerst, 2002; Dega et al., 1996). Many of these effects may be attributed to contaminants. Agranulocytosis in 4 patients taking ginseng had been linked to unreported phenylbutazone and aminopyrine contained in the preparation (Ries et al.,


1975). A ginseng abuse syndrome, characterized by morning diarrhoea, hypertension, rashes, insomnia, and irritability had been reported (Siegel, 1979). Little is known regarding the effects of ginseng in children and adolescents (Braganza and Larkin, 2007).



1.2.6     Vitamins


B vitamins are a group of 8 individual water-soluble vitamins, usually referred to as the B complex when grouped together, and all play essential roles in cellular processes. B vitamins are incorporated into many of the mainstream energy drinks. A typical can of 250




ml may contain 360% of the recommended daily allowance (RDA) of B6, 120% of B12, and 120% of B3 (niacin). The container size varies among brands and it may hold multiple servings. The addition of excess amounts of B vitamins is also observed in the more extreme energy drinks like 5-Hour Energy which contains 8333% of the RDA for vitamin B12 and 2000% of the RDA for B6. It is claimed that the consumption of these large amounts of B vitamins increases mental alertness and focus, as well as improves mood. The average person, however, consumes the RDA of B vitamins from a typical diet since B vitamins are found in a variety of foods including bananas, lentils, potatoes, tuna, and turkey. Vitamins B2 (riboflavin), B3 (niacin), B6 (pyridoxine, pyridoxal, pyridoxamine), and B12 are the most common of the B vitamins that are incorporated into energy drink formulations (Wardlaw and Smith, 2009).



Vitamin B2 is a coenzyme in the metabolism of carbohydrates. Vitamin B3 plays a major role as a coenzyme in energy metabolism, fat synthesis, and fat breakdown (Wardlaw and Smith, 2009). Vitamin B6 is a group of 3 structurally similar compounds that all can be converted into the vitamin B6 coenzyme which aids in the utilization of carbohydrates, fats, and proteins (Wardlaw and Smith, 2009). Vitamin B12 assists in folate metabolism and in nerve function (Wardlaw and Smith, 2009). Since all of the B vitamins are water soluble, once the RDA has been met, the excess vitamins are excreted from the body via urine. Although the consumption of a large amount of B vitamins does not possess any adverse health effects, the logic behind the extreme amounts of B vitamins in these beverages is not well rationalized (Wardlaw and Smith, 2009).








1.2.7     Sugar


Sugar is one of the most common as well as most dangerous additives on the market today.


It‘s sweet taste and short-term positive effects lead health experts to consider the possibility of sugar addiction. Natural sugars, such as those found in fruits and dairy products, provide an easily digestible form of good-for-you energy. The synthetic copycats like refined sugar, sucrose, fructose and glucose do far more harm than good (Nash, 1992).



More than 32 g of extra sugar a day can cause a myriad of health problems (Bauer, 2011) such as raised cholesterol levels, suppressed immune system, hyperactivity, anxiety, difficulty concentrating, crankiness, decreased emotional stability, a raised level of neurotransmitters, hypoglycemia, increased blood pressure, interference with protein absorption, and impaired DNA structure (Appleton, 2011). Just one serving of Red Bull contains 27 g of sugar (Red Bull Energy drink USA), and the average cup of coffee contains 32 g (Starbecks coffee company) (Nash, 1992).




  • Justification


Energy drinks have established an enviable position in the beverage market as evidenced by their commonplace consumption. There are a number of scientific reports on the adverse consequences of excessive consumption of these drinks. Many of these products do not provide the complete chemical composition, and the caffeine content and other ingredients present are unknown to the consumer. Hence there is need to quantify the major content of these energy drinks and compare with those of accepted standards. Also, energy drinks occur mostly in liquid and powdered forms. There has been little or no research on the powdered products as more attention has been given to those in liquids.




These powdered products are usually dissolved in water by consumers before intake. It is therefore imperative to determine the caffeine, aspartame and other energizers of the powdered products and compared them with those of the liquid products. It will also be necessary to determine some other physicochemical properties of the energy drinks.



  • Aim and Objectives


The aim of this work is to carry out comparative study on the physicochemical properties and some chemical constituents of selected energy drinks. This will be achieved through:


  1. determination of the caffeine and aspartame concentrations of the energy drinks;


  1. determination of the carbohydrate (sugar) contents;


  1. determine the physicochemical properties of energy drinks;


  1. determination of the level of heavy metals (Cu, Zn, Pb, Cd, Mn, Fe) in them;


  1. determination of micronutrients (K, Ca,) present in them;


  1. using Statistical Analysis to analyse and compare between the powdered and liquid forms of energy drinks;


  1. comparing the obtained results with set standards by regulatory bodies.


DISCLAIMER: All project works, files and documents posted on this website, are the property/copyright of their respective owners. They are for research reference/guidance purposes only and some of the works may be crowd-sourced. Please don’t submit someone’s work as your own to avoid plagiarism and its consequences. Use it as a reference/citation/guidance purpose only and not copy the work word for word (verbatim). The paper should be used as a guide or framework for your own paper. The contents of this paper should be able to help you in generating new ideas and thoughts for your own study. is a repository of research works where works are uploaded for research guidance. Our aim of providing this work is to help you eradicate the stress of going from one school library to another in search of research materials. This is a legal service because all tertiary institutions permit their students to read previous works, projects, books, articles, journals or papers while developing their own works. This is where the need for literature review comes in. “What a good artist understands is that nothing comes from nowhere. The paid subscription on is a means by which the website is maintained to support Open Education. If you see your work posted here by any means, and you want it to be removed/credited, please contact us with the web address link to the work. We will reply to and honour every request. Please notice it may take up to 24 – 48 hours to process your request.

WeCreativez WhatsApp Support
Administrator (Online)
Hello and welcome. I am online and ready to help you via WhatsApp chat. Let me know if you need my assistance.